Scintillon thanks the City of San Diego for funding the SURE Program
Scintillon Institute thanks the City of San Diego’s Economic Development Department for funding the SURE Program in 2018 – 2019. This generous grant demonstrates the support and commitment the City of San Diego has for growing the economic possibilities of San Diego students across all backgrounds.  STEM education and the immersion job training provided by the SURE program aligns with City goals to generate small business jobs and economic revenue for San Diego, including its large biotechnology community.  The City of San Diego's  Economic Development Department assists individual businesses and helps strengthen business organizations and improve business districts throughout San Diego.  Encouraging community revitalization and promoting economic opportunity for all segments of the population to retain, attract and maintain the types of businesses that contribute positively to the local economy, the City leverages public incentives and assistance to promote community revitalization, attract new businesses and encourage investment in local businesses. Continue reading

Happy Holiday Wishes from Scintillon
A new Resilience in Aging center is upcoming in 2019, including new faculty members recruited through a very successful program we implemented in 2018—Scintillon Assistant Professor Entry Program. Continue reading

Machine learning can help identify suitable distribution and storage conditions for delicate extra virgin olive oil
Machine learning can help identify suitable distribution and storage conditions for delicate extra virgin olive oil     Nowadays, in the United States, and especially in California, different extra virgin olive oils are being produced. Nevertheless, many European countries have been and still are importing their extra virgin olive oils, mainly from Spain and Italy. Many recent studies performed in the US regarding the quality of these imported oils have revealed many low-quality products, even from prestigious brands, causing much discomfort in this sector overseas. Although initial blames were put on the producers, there is more and more evidence that, in fact, the distribution chain and storage plays a major role in the degradation of these delicate foods. Harsh conditions have been reported during transportation in ships, having olive oil containers sitting in the sun from days to even months at very high temperatures. Continue reading

Scintillon Institute Receives $5,000 Donation from Vertex Pharmaceuticals
Scintillon Institute Receives $5,000 Donation from Vertex Pharmaceuticals   La Jolla, California August 14, 2018  Scintillon Institute for Biomedical and Bioenergy Research is honored to announce that it has received a $5,000 donation from Vertex Pharmaceuticals in support of the Summer Internship Program (SURE Program).  This donation marks the first corporate partnership for Scintillon, a rapidly growing nonprofit research institute, and will help expand this free program for high school students to create vital resume-building opportunities through faculty mentorship and experience working in professional research labs. Continue reading

Machine Learning for Better Food Series Article I: High Grade Olive Oil
In the current age of information, where digitization is becoming indispensable (turning signals into digital format; i.e. “0s” and “1s”), photographs can be used as a great source of data. They can be transformed into mathematical databases, where each color of a single pixel can be seen as a set of three numbers representing the intensity of red, green, and blue channels. Therefore, the higher the number of pixels in a photo, which is directly related to its resolution, the greater the amount of information that can be used for different applications.   In this specific scenario, several photographs of olives, of different quality grades, were gathered, and their pixel maps were extracted through image processing. Afterwards, this information was used to train intelligent mathematical models to distinguish the olives in terms of quality grade. This intelligent modeling is also known as machine learning (computational artificial intelligence), which is becoming more and more popular within the scientific community. In many cases, its use is turning out to be a necessity, as it is the only way to process the immense databases that arise from fields such as food technology, biochemistry, or biomedicine. Continue reading

Now accepting applications for SURE program
Scintillon Institute is now accepting applications for this summer's SURE program.   The Summer Internship Program (SURE Program) aims to introduce top high school applicants to basic scientific research and prepare them for college. One goal of this immersive research experience is to encourage and prepare the most talented high school students for successful careers in biomedical research. In addition, the SURE Program aims to create a pipeline of future scientists for the highly competitive and successful biomedical research community in San Diego County. The very best high school students from San Diego County school districts will be selected and invited to participate in the SURE Program. A Scintillon Institute faculty member will be the student’s scientific mentor and will introduce the student to the program’s curriculum and guide the student through to graduation of the program. The SURE Program has a specially tailored curriculum that aligns the students’ time constraints with the commitment required by basic research.   Applications are due by 5pm on March 30, 2018.  More details can be found under Summer Program.    

Crowdfunding Campaign Live
Scintillon Institute launches its first crowdfunding campaign!   Did you know that 2.7 million Americans suffer from glaucoma and over 65% are women? Scintillon Institute believes the future of science begins today. But we need your help! We aim to purchase a confocal microscope for our newly established Eye Disease Research Center.  Our goal is $500,000 by December 31. As a thank you, we are offering exciting perks, such as tickets to our 'Healthy Aging' lecture series and an exclusive lunch with our top scientists.    To learn more and donate, please visit our campaign page.   Thank you for sharing our vision!    

A Promising Finding to Combat Autism
Promising Finding to Combat Autism San Diego, CA   A group of researchers at Scintillon Institute in San Diego, California demonstrated a promising therapeutic intervention for autism in an animal model.  This study, published today in Nature Communications under the title of “NitroSynapsin therapy for a mouse MEF2C haploinsufficiency model of human autism”, proposes a therapeutic strategy to mitigate the hallmarks of MEF2C haploinsufficiency syndrome (MCHS), a condition where patients who carry one copy of defective MEF2C gene suffer from severe neurological conditions including autism spectrum disorders, intellectual disabilities, and seizures.   Neurons of normal versus mutant cells   Continue reading

Curing blindness through molecular biology and genetics
A group of researchers at Scintillon Institute in San Diego, California and their collaborators identified important roles of myocyte enhancer factor 2 (MEF2) in the pathogenesis of stress-induced photoreceptor degeneration, a condition that is thought to contribute to eye diseases, such as retinitis pigmentosa and age-related macular degeneration, as described in their two recent publications (1,2). MEF2 is an activity-dependent transcription factor which is expressed in various organs, such as the heart, lymphocytes and brain. Dr. Stuart Lipton’s group has continuously worked on MEF2 since 1993, when they first isolated MEF2C, one of four mammalian MEF2 isoforms, in the developing brain. These researchers made seminal discoveries that established the notion that MEF2 transcription factors are prominent regulators of neurogenesis and neuronal survival in the brain. More recently, their work on MEF2C mutant mice led to the recognition of the human disease called MEF2C haploinsufficiency syndrome, in which children with heterozygous loss-of-function MEF2C mutations suffer from severe neurological conditions, including autism spectrum disorders, developmental and intellectual disabilities and seizures. Scientists at the Neural Center of the Scintillon Institute have been expanding on MEF2 research, most recently turning their eyes to eye diseases (pun intended). Retinal photoreceptor cells express two MEF2 isoforms: MEF2C and MEF2D, the latter apparently being the predominant form. In a recent study, the researchers examined mutant mice completely lacking MEF2C or MEF2D (MEF2C- or MEF2D- “null” mice). Interestingly, both mutant mice developed drastic retinal degenerations by postnatal day 30. They then took a candidate approach to identify the molecular pathways affected by the loss of MEF2D in MEF2D-null mice. Among the pathways they examined was the PGC1α pathway, which regulates mitochondrial biogenesis and thereby protects cells from degeneration. The Lipton group determined that transcription of PGC1α was indeed reduced in MEF2D-null mice. Yet by overexpressing PGC1α in the retina of MEF2D-null mice, the researchers found that the retinal degeneration could be rescued. In another related study, they examined mice lacking one copy of MEF2D (MEF2D-heteretozygous or “het” mice). Unlike MEF2D-null mice, MEF2D-het mice did not show any retinal regeneration when they were raised under normal housing environment. The researchers then exposed MEF2D-het mice to a strong white fluorescent light for 2 hours. While this light exposure did not induce any retinal degeneration in the wild-type mice, it did cause significant retinal cell death in MEF2D-het mice. The light exposure massively produced reactive oxygen species (ROS), which appeared to be the toxic cause. When searching for affected downstream pathways, they found that the transcription factor NRF2, a regulator of the cellular antioxidant defense response, fails to be induced by light exposure in MEF2D mutant mice. The researchers attempted to reverse light-induced retinal cell death by treating the MEF2D-het mice with carnosic acid, a chemical they had previously identified as a potent antioxidant and NRF2 activator. Intriguingly, treatment of carnosic acid drastically ameliorated the amount of light-induced retinal cell death in the mutant mice. Together, these studies from the Scintillon Institute identify MEF2 transcription factors as crucial molecules in maintaining eye health. Importantly, they have shown that MEF2 and its downstream pathways can be targeted by drugs such as carnosic acid. Incidentally, carnosic acid is a naturally occurring chemical that is contained in herbs such as rosemary and sage. So, there may be a health benefit in cooking chicken and turkey with rosemary! Within Scintillon Institute's Neural Center, the new Eye Research Center is being established, parallel to its Neural Degenerative Disease Center, through an ongoing fund-raising campaign, and is currently recruiting new faculty members.   1. Proc Natl Acad Sci USA 114, E4048 2. Inv Opthal Vis Sci 58, 3741

Scintillon team to play key role in center for creating bioluminescent neuroscience tools
01 August 2017 FOR IMMEDIATE RELEASE Scintillon team to play key role in center for creating bioluminescent neuroscience tools San Diego, CA In a new collaboration, scientists will advance and freely circulate a research technology that makes brain cells able to produce, respond to, and communicate with light. Nathan Shaner, Ph.D. will lead Scintillon Institute’s contribution to a national center dedicated to developing and disseminating new tools based on bioluminescence. The five-year grant from the National Science Foundation aims to develop tools to give nervous system cells the ability to make and respond to light. Neuroscientists can use these tools to manipulate and observe the circuitry of the brain in a variety of model organisms.   “NeuroNex Technology Hub” is a new collaboration of labs at Brown University, Central Michigan University and the Scintillon Institute. The team will improve upon and combine several unique bioengineering technologies to create new research capabilities, rooted in bioluminescence-the natural ability of cells to make light. They will then make their advances rapidly, easily, and freely available to the global scientific community.     Shaner joins co-principal investigators Diane Lipscombe, Brown professor of neuroscience and director of the Brown Institute for Brain Science, and Ute Hochgeschwender, professor at CMU, on a team led by Christopher Moore, a professor of neuroscience at Brown. Justine Allen, a Brown neuroscience PhD alumna, will be the center’s administrative director.   Creating a curriculum, which combines elements of biology, chemistry, physics and engineering, to engage and educate high school students will be a key facet of the center’s mission.   “The highly visual nature of this research is a great way to get young people interested in science,” said Shaner. “Being able to see living neurons lighting up as they fire under a microscope can be a transformative experience for them.” Continue reading